Como lidar com API Keys da
forma mais segura possivel

B

victor.melo@thoughtworks.com

mailto:victor.melo@thoughtworks.com

Quem sou eu

6
thoughtworks UFRGS PUC

UNIVERSIDADE FEDERAL
DO RIO GRANDE DO SUL

Engenheiro de Software Sénior Formando em Ciéncia da Computacao Ex Aluno do Apple Developer Academy

(& Linked[[}]

Time is Money Calculator na App Store https://victor.dev.br linkedin.com/in/vsmelo/

Segredos 2

O gque sao Segredos

Credencial digital usada para acessar algum recurso computacional

Exemplos de Segredos

eitltfeeat) l/-m \\ _j
%k % K % ok ok k % X - NS //
B \\ .

Senhas Certificados Tokens de API keys
privados autorizacao

Vulnerabilidades @ ¢

Dois tipos de vulnerabilidade

(Na minha opiniao)

Camadas de Rede

Vulnerabilidade em Comunicacao

Protocolos para comunicacao entre aplicacoes especializadas

Camada de Aplicacao HTTP, SMTP, FTP, Protocolos proprios

Protocolos para comunicacao entre processos

TCP, UDP

Protocolos para comunicacao entre sistemas finais (hosts)
Camada de Rede P

Protocolos para comunicacao entre um novo e outro (roteadores)

Camada de Enlace Ethernet, Wi-Fi

Protocolo para transmitir bits em espaco fisico

Camada Fisica Protocolo para cabo de fio trangado, para fibra, ...

Analogia

Correios

Onde entra a seguranca? =

Camadas de Rede

Vulnerabilidade em Comunicacao

Camada de Aplicacao

Protocolos para comunicacao entre processos

UDP: simples. Nao garante que um pacote enviado sera recebida (carta perdida)

Camada de Transporte TCP: mais complexo. Garante entrega ordenada dos pacotes.

Nenhum protocolo garante o sigilo do pacote (carta € sempre enviada sem um lacre)

Camada de Rede

Camada de Enlace

Camada Fisica

Vulnerabilidade em Comunicacao

Aplicacao

Subcamada TLS/SSL

Subcamada SSL criptografa e
descriptografa mensagens

Aplicacao

“Ola mundo”

HTTP | “Ol4 mundo” HTTPS Subcamada TLS/SSL

Huasdfaij4a3kwejraf

Pontos de Vulnerabilidade

Engenharia reversa

Conta que usuario instale um software
malicioso ou que o desenvolvedor nao
tenha protegido os segredos em sua Ramsomware
aplicagao. . ..

Cavalo de Troia

“Ola mundo”

Aplicacao > Vulnerabilidade local:

HTTP | “Ola mundo” Al Subcamada TLS/SSL

Huasdfaij4a3kwejraf

Vulnerabilidade na comunicacao:
Conta que nao esteja usando a

uma criptografia fraca)

Rogue Access Point

Spoofing

Sniffing

Engenharia Reversa

Processo em Memoria Virtual

max
Contém dados temporarios (parametros de funcoes, enderecos de retorno e variaveis locais)

Memoria dinamicamente alocada em tempo de execucao (ex: ao fazer recursao)
Contem variaveis globais (ex: estaticas)

Contem o codigo do programa

Engenharia Reversa

Processo em Memoria Virtual

o “

0

1+8
I+7
I+6
I+5
1+4
I+3
1+2

I+1

Como podemos nos proteger?

OWASP Top 10 Mobile Risks

Top 10 Mobile Risks - Final List 2016

e M1:
o M2:
o MS3:
o M4:
o M5:
o M6:

e M7
e M8
e M9

e M10: Extraneous Functionality

mproper Platform Usage
nsecure Data Storage
nsecure Communication
nsecure Authentication
nsufficient Cryptography
nsecure Authorization

: Client Code Quality

: Code Tampering

. Reverse Engineering

How Do | Prevent ‘Code Tampering’?

The mobile app must be able to detect at runtime that code has been added or
changed from what it knows about its integrity at compile time. The app must be able
to react appropriately at runtime to a code integrity violation.

The remediation strategies for this type of risk is outlined in more technical detalil
within the OWASP Reverse Engineering and Code Modification Prevention Project.

Android Root Detection Typically, an app that has been modified will execute
within a Jailbroken or rooted environment. As such, it is reasonable to try and detect
these types of compromised environments at runtime and react accordingly (report
to the server or shutdown). There are a few common ways to detect a rooted
Android device: Check for test-keys

e Check to see if build.prop includes the line ro.build.tags=test-keys indicating a
developer build or unofficial ROM

Check for OTA certificates

https://owasp.org/www-project-mobile-top-10/

Input Validation Testing
Testing for Reflected Cross Site Scripting (OTG-INPVAL-001)
Testing for Stored Cross Site Scripting (OTG-INPVAL-002)
Testing for HTTP Verb Tampering (OTG-INPVAL-003)
Testing for HTTP Parameter pollution (OTG-INPVAL-004)
Testing for SQL Injection (OTG-INPVAL-005)

Oracle Testing

MySQL Testing

SQL Server Testing

Testing PostgreSQL (from OWASP BSP)

MS Access Testing

Testing for NoSQL injection
Testing for LDAP Injection (OTG-INPVAL-006)
Testing for ORM Injection (OTG-INPVAL-007)
Testing for XML Injection (OTG-INPVAL-008)

S E C U R I T Y Testing for SSI Injection (OTG-INPVAL-009)
T E S T I N G Testing for XPath Injection (OTG-INPVAL-010)

G U I D E IMAP/SMTP Injection (OTG-INPVAL-011)
| VERSION 42 . Testing for Code Injection (OTG-INPVAL-012)
| Testing for Local File Inclusion

OWASP Guides

@QLUHSD ‘ Standard

MASVS

Mobile Application Security
Verification Standard

MSTG

MOBILE
SECURITY
TESTING
GUIDE

Version 1.2

Carlos Holguera, Bernhard Muller,

Sven Schleier and Jeroen Willemsen verSion 1'3

Testing for Remote File Inclusion
Testing for Command Injection (OTG-INPVAL-013)

Elie Saad

S Testing for Buffer overflow (OTG-INPVAL-014)

Testing for Heap overflow

Testing for Stack overflow

Testing for Format string

Testing for incubated vulnerabilities (OTG-INPVAL-015)
Testing for HTTP Splitting/Smuggling (OTG-INPVAL-016)

https://owasp.org/www-project-mobile-top-10/

Caso Real €

Problema

final class Config {

static let APIKey: String = {
#1f DEBUG
return "Bla bla bla API Key de Debug"
#else
return "Bla bla bla API Key de Producao"
#endif

Segredos hardcoded

Problema

final class Config {

» Segredos enviados para o repositoério. Stati? let APIKey: String = {
#1Tf DEBUG
« Segredos expostos na area de dados do return "Bla bla bla API Key de Debug"

Processo. #else
return "Bla bla bla API Key de Producao"
#endif

Segredos hardcoded

Solucoes Consideradas

Buscar das nossas APls Solucao inspirada no arquivo .env

Solucoes Consideradas

N4

{ @\) AWS Secrets Manager Implementacao mais complexa pra nossa arquitetura

~de Buscar das nossas APls Implementacao mais complexa pra nossa arquitetura

Solucao inspirada no arquivo .env Soluciona problema com repositorio, mas nao com engenharia reversa

Acao Tomada

* Arquivo json compartilhado por canal seguro.

» Script executado em tempo de build, parseando o json e
gerando arquivo swift com segredos ofuscados.

Solucdo inspirada no arquivo .env (Em Android, o arquivo final gerado € um binario em outra linguagem, como C ou similar).

Conclusao

« A forma mais segura é a forma que mais dificulta o vazamento.
 Pra conhecer como dificultar, precisa conhecer as vulnerabilidades.

e https://owasp.org/www-project-mobile-top-10/

* A implementacao depende das restricoes do projeto.

https://owasp.org/www-project-mobile-top-10/

Conclusao

Sejam curiosos

how to handle secrets mobile X Q

Q Al [») Videos [i) Images [News < Shopping : More Tools

About 51,200,000 results (0.67 seconds)

https://medium.com » advanced-ios-engineering » mobi... ~

Mobile Secrets. Handle secrets the secure way with ease

Oct 5, 2019 — In this article, | will show how to use Mobile Secrets gem alongside with GPG to
handle app secrets the most secure way. Mobile Secrets is ...

https://guides.codepath.com » android » Storing-Secret-... ~

Storing Secret Keys in Android | CodePath Android Cliffnotes

Hidden as constants in source code. The simplest approach for storing secrets in to keep them
as resource files that are simply not checked into source control.

https://www.appdome.com » no-code-data-encryption ~

How to Store Encrypted Secrets in Android & iOS Memory

Appdome's Storing in Protected Memory enables you to protect those secrets by storing them in
the mobile app encrypted memory. This Knowledge Base article ...

https://hackernoon.com » hands-on-mobile-api-security... v

Hands On Mobile API Security: Get Rid of Client Secrets

Mav 3 2017 — The NASA API| calls are handled in the arc/ani/nasa is mndule \When the nroxv

Conclusao

How Bad Can It Git? Characterizing Secret Leakage
in Public GitHub Repositories

Michael Meli
North Carolina State University
mjmeli@ncsu.edu

Matthew R. McNiece

North Carolina State University
Cisco Systems, Inc.

Bradley Reaves
North Carolina State University
bgreaves @ncsu.edu

mrmcniec @ncsu.edu

Abstract—GitHub and similar platforms have made public
collaborative development of software commonplace. However, a
problem arises when this public code must manage authentication
secrets, such as API keys or cryptographic secrets. These secrets
must be Kkept private for security, yet common development
practices like adding these secrets to code make accidental leakage
frequent. In this paper, we present the first large-scale and
longitudinal analysis of secret leakage on GitHub. We examine
billions of files collected using two complementary approaches: a
nearly six-month scan of real-time public GitHub commits and
a public snapshot covering 13% of open-source repositories. We
focus on private key files and 11 high-impact platforms with
distinctive API key formats. This focus allows us to develop
conservative detection techniques that we manually and automat-
ically evaluate to ensure accurate results. We find that not only
is secret leakage pervasive — affecting over 100,000 repositories
— but that thousands of new, unique secrets are leaked every day.
We also use our data to explore possible root causes of leakage
and to evaluate potential mitigation strategies. This work shows
that secret leakage on public repository platforms is rampant
and far from a solved problem, placing developers and services
at persistent risk of compromise and abuse.

[. INTRODUCTION

Since its creation in 2007, GitHub has established a massive
community composed of nearly 30 million users and 24 million
public rcposuoncs [1], [11], [55]. Beyond merely storing

ende (ntHoh 1¢ decioned tan enconrace nunhlic callaharative

leaked in this way have been exploited before [4], [8], [21], [25],
[41], [46]. While this problem is known, it remains unknown to
what extent secrets are leaked and how attackers can efficiently
and effectively extract these secrets.

In this paper, we present the first comprehensive, longi-
tudinal analysis of secret leakage on GitHub. We build and
evaluate two different approaches for mining secrets: one is able
to discover 99% of newly committed files containing secrets in
real time, while the other leverages a large snapshot covering
13% of all public repositories, some dating to GitHub's creation.
We examine millions of repositories and billions of files to
recover hundreds of thousands of secrets targeting 11 different
platforms, 5 of which are in the Alexa Top 50. From the
collected data, we extract results that demonstrate the worrying
prevalence of secret leakage on GitHub and evaluate the ability
of developers to mitigate this problem.

Our work makes the following contributions:

e We perform the first large-scale systematic study
across billions of files that measures the prevalence
of secret leakage on GitHub by extracting and val-
idating hundreds of thousands of potential secrets.
We also evaluate the time-to-discovery, the rate and
timing of removal, and the prevalence of co-located
secrets. Among other findings, we find thousands of

confidential information of mobile developers but also direct

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering in Practice

Protecting Million-User iOS Apps with Obfuscation:
Motivations, Pitfalls, and Experience

Pei Wang’ Dinghao Wu
pxw172@ist.psu.edu dwu@ist.psu.edu
The Pennsylvania State The Pennsylvania State
University University

ABSTRACT

In recent years, mobile apps have become the infrastructure of many
popular Internet services. It is now fairly common that a mobile app
serves a large number of users across the globe. Different from web-
based services whose important program logic is mostly placed on
remote servers, many mobile apps require complicated client-side
code to perform tasks that are critical to the businesses. The code of
mobile apps can be easily accessed by any party after the software
is installed on a rooted or jailbroken device. By examining the code,
skilled reverse engineers can learn various knowledge about the
design and implementation of an app. Real-world cases have shown
that the disclosed critical information allows malicious parties to
abuse or exploit the app-provided services for unrightful profits,
leading to significant financial losses for app vendors.

One of the most viable mitigations against malicious reverse

Zhaofeng Chen Tao Wei
chenzhaofeng@baidu.com lenx@baidu.com

Baidu X-Lab Baidu X-Lab

ACM Reference Format:

Pei Wang, Dinghao Wu, Zhaofeng Chen, and Tao Wei. 2018. Protecting
Million-User iOS Apps with Obfuscation: Motivations, Pitfalls, and Experi-
ence. In ICSE-SEIP '18: 40th International Conference on Software Engineering:
Software Engineering in Practice Track, May 27-June 3, 2018, Gothenburg,
Sweden. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3183519.
3183524

1 INTRODUCTION

During the last decade, mobile devices and apps have become the
foundations of many million-dollar businesses operated globally.
However, the prosperity has drawn many malevolent attempts to
make unjust profits by exploiting the security and privacy loopholes
in popular mobile software.

ineering is ta ohfiscate th f hef: 1 Desnit ¥ s 4l t4ar hranc) :

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

An Empirical Study of SDK Credential Misuse in
10S Apps

Haohuang Wen Juanru Li

Yuanyuan Zhang, Dawu Gu

School of Software Engineering Lab of Cryptology and Computer Security Lab of Cryptology and Computer Security

South China University of Technology Shanghai Jiao Tong University
Shanghai, China
jarod@sjtu.edu.cn

Guangzhou, China
onehouwong @ gmail.com

Abstract—During the development of web-based mobile apps,
third-party SDKs (Software Development Kit) are frequently
used to facilitate the integration of certain functionality such
as push notification and mobile payment. Unfortunately, security
issues are often considered as a second-tier problem and app
developers are prone to implement apps with SDK misuses.
Among those typical SDK misuses, the misuse of credentials is
the one that introduces serious security threats. A credential
is a set of unique information (e.g., APP ID, App Token, etc)
allocated to a specific developer to help app authenticate the
identity. However, if not properly used, the credential can be
casily obtained by attackers and leads to not only the leak of

Shanghai Jiao Tong University
Shanghai, China
{yyjess, dwgu} @sjtu.edu.cn

Since credentials are often the only authentication infor-
mation for many web services, mobile developers need to
properly manage them and should be extra vigilant about
credential security. Unfortunately, the use of mobile SDKs
often weakens this assumption. For one thing, SDK providers
often publish vague instructions on how to use credentials,
leading to mistakenly embedded and protected credentials. For
another, even if a correct guide of credential management
is published, it involves many aspects of protection and is
often very complex. Developers still face various challenges
in implementing a secure protection scheme. As a result, many

Linked [T}

Obrigado! £

linkedin.com/in/vsmelo/

